

TECH TIP: The diagram above is the recommended setup for standard 2-port systems. For more information on larger advanced recovery method setups, scan the QR code.

Recommended Recovery Accessories & Products

Product	Description	Part #
Recovery Machine	G5Twin Refrigerant Recovery Machine	G5TWIN
Compound Digital Stub Gauge	PTC900 Digital Pressure Temperature Compound Gauge	PTC900
Filter Drier	Size 032 Filter Drier or larger (1/4 in. Flare Fittings)	Contact Wholesaler
Refrigerant Scale	WS260 Precision Scale	WS260

How to setup the SpeedKit-R for **Optimal Flow** and **Fast Recovery**

Setup Notes

- Connect Valve Core Removal Tools to both sides of the system where possible. Always remove valve cores for unrestricted refrigerant flow.
- 2-Connect a digital pressure gauge to the side port of both Valve Core Removal Tools. A compound digital pressure gauge will indicate when the EPA required Level of Evacuation (e.g. 10 inHg) has been reached.
- 3 Connect all hoses and a suitable filter drier as per diagram. It is important that you connect to the vapor port of the recovery cylinder to avoid the restrictive liquid dip tube.
- 4-Begin the recovery process by recovering accessible liquid first with the recovery cylinder inverted for better cooling.
 Never throttle the recovery unit during the recovery process.
- **5**-**Once all liquid refrigerant has been recovered,** open the ball valve on the Valve Core Removal Tool attached to the vapor side and continue the recovery process.
- 6 Rotate the cylinder right-side-up when the recovery has reached vapor-only to reduce the chance of liquid refrigerant in the output hose. Care should be taken to turn the cylinder in the correct direction.

SAFETY NOTE: Always monitor the fill capacity of the cylinder with an appropriate weigh scale.

MegaFlow[™] SpeedKit-R Contents

Product	Part #
(4) MegaFlow™ Valve Core Removal Tools	(2) MGAVCT (1/4 in.) (2) MGAVCR (5/16 in.)
(2) 3/8 in. MegaFlow™ 6 ft. Recovery Hoses	MH380006EAR (<i>Red</i>) MH380006EAB (Blue)
(1) 3/8 in.MegaFlow™ 1 ft. Filter Drier Hose	MH380001BAB
(1) 3/8 in.MegaFlow™ 4 ft. Recovery Output Hose	MH380004AAY
(1) 1/4 in. Speed-Y™	SPDY14
(1) SpeedKit Tool Bag	PK7520

Important Recovery Tips

• Evacuate the recovery cylinder -

Recovery cylinders should be evacuated to <u>500 microns</u> prior to use to remove non-condensables and contaminants, as well as improve the initial transfer of refrigerant.

• Always purge hoses prior to recovery -

This will reduce/prevent non-condensables from entering the recovery tank.

• Remove input restrictions -

Valve cores and core depressors block about 90% of all flow and act as metering devices during recovery. By removing these restrictions, it allows the machine to pump liquid refrigerant with the full flow it was designed for. [Fig. 1]

• Use 3/8 in. hoses -

Standard 1/4 in. hoses are extremely restrictive and will slow the recovery process.

• Pump liquid refrigerant first -

Liquid refrigerant is significantly more dense than vapor and is therefore much more efficient to pump. [Fig. 2] The G5Twin Recovery Machine is designed to pump straight liquid with <u>no throttling.</u>

- Clean input fitting debris screen before every use -The screen can become clogged with debris and reduce performance. [Fig. 3]
- Use a new inline filter drier on every job -

A filter drier protects the compressor against damage when pumping refrigerant. This is especially important on burnout systems.

• Fully open both valves on the G5Twin -

The G5T win Recovery machine was designed to run with the onboard valves fully open. [Fig. 4] If it is necessary to throttle the G5T win in order to quiet the machine, that is an indication that output restrictions are present in the setup.

- Connect to the vapor port on the recovery tank -This will avoid the restrictive liquid dip tube on the liquid port. [Fig. 5]
- Fully open the valve on the recovery tank -

A partially opened valve will create an output restriction, slow recovery speeds, and noisy recovery.

[Fig. 2] - R-410A Density

[Fig. 4] - Fully Open Valves on the G5Twin